Twisted diffusion sampler for
controllable generation with
application to motif-scaffolding
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Diffusion models have been powerful...

t/ T=199/200

Text to image generation with Video generation Protein generation
Stable Diffusion with Open Al’'s Sora with SE3 FrameDiff*

*SE3 diffusion model with application to protein backbone generation. Yim et al. 2023



* Creating and training large-scale diffusion models from scratch is a massive
undertaking

* There are (many) off-the-shelf pre-trained diffusion models
* They provide good-quality universal generation

* Practitioners are often more interested in controllable generation that is customized
to a specific task
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Motif Identification

source: (1) De novo design of protein structure and function with RFdiffusion.Watson et al. 2023.

(2) Doug Tischer



How can we make use of those powerful, pre-trained diffusion models

for controllable generation!?



There are two common paradigms to adapt pre-trained diffusion models

¢ Training-required approach * Inference-time approach

e Finetune on specific tasks * Heuristic method: e.g. guidance

e Adapt model’s architecture to take in additional inputs * More theoretically grounded methods

. °
o Pros: PI’OS.

e fast inference * training-free

e good performance if additional training is “sufficient” * more flexible

. °
e Cons: Cons:

_ . . .
e labor- and compute-extensive increased inference time and/or compute

* some heuristic methods may have low-fidelity

* |ess flexible. E.g. difficult to adapting to new tasks, or .
generation output

composition of tasks.



There are two common paradigms to adapt pre-trained diffusion models

e Training-required approach * Inference-time approach

e Finetune on specific tasks * Heuristic method: e.g. guidance

e Adapt model’s architecture to take in additional inputs * More theoretically grounded methods

. °
° Pros: PI‘OS.

e fast inference * training-free

* good performance if additional training is “sufficient” * more flexible

e Cons: * practical and asymptotically accurate

' o ns:
* |abor- and compute-extensive Cons

. . . ° I
* less flexible. E.g. difficult to adapting to new tasks, or slow inference

composition of desired properties. . heurist hod | ow_fidel:
geheration-output
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* Problem formulation: controllable generation
 Background: diffusion models

e Method:Twisted Diffusion Sampler (TDS)

e Case study: protein motif-scaffolding



Problem formulation

0

e Goal: generate data X" in response to conditioning criteria y

e Conditional sampling:

o given a generative model py(x"), a likelihood Pyjx0(Y | x") and and conditional

information y

e sample from the conditional distribution pe(xo | V) pe(xo)pylxo(y | xY).
e Example:

o py(xY) is distribution of natural images

o py‘xo(y | XO) is an image classifier

. p(g(xo | v) is the conditional distribution of images given a class label y



Problem formulation

0

e Goal: generate data X" in response to conditioning criteria y

e Conditional sampling:

e given a generative model pe(xo), a likelihood p,, oy | xY), and conditional

information y

e sample from the conditional distribution pe(xo | V) pe(xo)pylxo(y | xY).

e Example:
. pg(xo) is distribution of physically realizable proteins

o Dy(y | xY) = 5x](\)4(y) is a Delta distribution at a substructure (e.g. motif)

o pg(xo | v) is the conditional distribution of proteins that contain substructure y
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Diffusion model learns the distribution of data x" by gradually adding noise
to the data, and learning to reverse the noising process

Q(xt ‘ xt—l) — /V()Ct ‘ X 15 02)

T so large that g(x’) = /' (x' | 0,Tc°D)

learn po(xi_1 | x¢)




To learn p@()ct_1 | x') that reverses the noising process:

e Note the true reverse transition is g(x'~! | x) & /(x| x' + 67 ,0°), log g(x") is score function
e If we have a score network , We can parameterize
px™ L XD == (x| X + 62 , 67

o Can’t compute the true score, but >
lo

e If we can learn to predict the clean data via a denoiser network

e Ihen we can parameterize the score network using denoisier:

102

Training is reduced to a series of

self-supervision tasks
T

: 0) o . 2
min D CE i I1X0 = £ D))
=1

learn po(zi—1 | x¢)




Generation

e Sample random noise x’

o Iteratively refine the noisy datapoint x” ~ py(x’ | x'*!)

o first predict the clean data X (x,)

e then transform )Acg(xt) to the score s,(x’) required for transition

e Return the clean data x°

learn po(zi—1 | x¢)
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e Recall our task of conditional sampling:

» given a generative model py(x"), a likelihood Pyjx0(Y | xY), and conditional

information y

« sample from the conditional distribution pe(xo | V) pg(x())py‘xo(y | xY).

e In diffusion models, augment the space to include

o given a diffusion model py( "), a likelihood p,, .o(Y | xY), and conditional

information y

o sample from the conditional distribution py( | V) & py( )Dy10(Y | xY).



e We cannot directly sample from py(x"! | y) pg(xO:T)py‘xo(y | x).

« However, the joint distribution p@(xO:T)pylxo(y | xY) is computable

* Naive importance sampling:

e Proposal: unconditional diffusion model pg(xO:T)

e Target (unnormalized): po(x"*! | y) o pg(xO:T)py‘xo(y | xV)

: Target 0T m py\xo(y ‘ XO) 0
 Weight = B 07 = . = Pyl | <9
Proposal DT Y

Generate a bunch of particles (samples) from proposal (difftusion models), and
then resample them according to their weights (likelihood values)
* Asymptotically exact

* Low efficiency, e.g. | out of |k sampled images is cat, for |k possible classes



Method: Twisted Diffusion Sampler

Ideas:
* twist the naive proposal to approach the ideal proposal

e develop intermediate weighting mechanism (Sequential Monte Carlo)

Secret sauce:

e the denoising prediction Xx,(x,)



T
Ideal proposal: p,(x""! | y) = p,(x! | y)H pox~1 | x%y)

=1

Let's approximate with some p,(x"! | y)
e Set ﬁg(xT | y) = A/ (xT ] 0,T6?]) =~ PQ(XT | y)

o Set po(x" 1| xl,y) = N (| X+ 0*[sy(x")+ 1, 6%), where

.« — ~ [
= Pyjo(y | ) R pyy | X)
* |ntuition: we want to refine the sample in the direction of

|. increasing unconditional marginal density,

2. increasing likelihood of predicted data.



o Set po(x" 1| xl,y) = N (| X"+ 0 [sy(x")+ 1, 6%), where

= Pyro(Y | ) ~ py(y | x7)

e Goal:show p,(x"~! | x',y) is a reasonable approximation to the true p,(x"~! | x', y)

04 04 °

p@(xt_l ‘ xta )’) — p@(-xt—l ‘ xt) Bayes’ rule
~ pe(xt_l | ,Xt) Likelihood approximation
~ pg(xt_l ‘ )Ct) Taylor expansion

— ,/V(_xt_l ‘ xt -+ gz[se(xt) -+ thl()gﬁe(y ‘ _xt), 02) Twist and complete the square

=: po(x" 1| X', y)



T

We have obtained the twisted proposal: p,(x"! | y) = p(x! | y)H Po(x=1 ] 2, y)

t=1
*We could directly plug it in to the importance sampling procedure.
*But this procedure will accumulate approximation errors in the sequential generation

steps, and therefore could still be sample-inefficient.
* ldea: design intermediate target and weight to correct for intermediate errors
*roughly: performing IS at every time step

*more formally: Sequential Monte Carlo (SMC)



*ldea: design intermediate target and weight to correct for intermediate errors

1 intractable
pQ(XO:T | y) X pg(XT | y) p H(Xt_l ‘ xf y) ~ but we can get a good approx. for free from twisted proposal
I I ’
=5
Final target ideal intermediate target up to r — 1 > compute intermediate weights
—1 [ ~ —1 [ — el : :
p@(x ‘ X, )7) ~ P@(X ‘ X ) ;= twisted intermediate target

*Set the intermediate weight to account for errors

B Pe(xt_l | XDy | Xt_l)/ﬁe(y | x")

W, =
- Pox=1 | x1,y)




The Twisted Diffusion Sampler (TDS)

Algorithm 1: Twisted Diffusion Sampler

x] ~N(0,To?) // initialize K particles

wic < Bl =P,y | Ro(x]))
for t=T.---.1do
{x;} ~ Multinomial ({x;, p; }; {wk}) // resample

XL~ B (It y) = N (xf + 02[so(xf) + Vg log pypea(1%(x§))], 02) // proposal

we e po( [0 pya(YIR0(E )/ pyoy1%6(xE)) - ot | xt, )] // weight

Return {w;}, {x?}

We show TDS is asymptotically exact as K — oo.
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Motif Identification Motif-Scaffolding

Task: generate the scaffold given a motif

Conditional sampling formulation:
o x'=[x;,xc),t =0, T
e M is the location indices for the motif segment, $ for the scaffold
e The likelihood function is 5x](\)4(y)
* or we can consider additional degree of freedom in the locations
of motif Z 5%()/), where M are all possible motif locations



Given motif segment:

Scaffold

Motif

Weiﬁht

particle 1

particle 2

particle 3
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Scaffold TDS & RF
size FrameDiff  diffusion
< 100 res. 9 3
> 100 res. 2 3
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# Partlcles # Motif Locs. # Motif Rots. Twist Scale

o

Success rate improves with more particles TDS v.s. RF diffusion: Number of problems with
(motif' 5|US) higher success rate on benchmark test cases.

TDS achieves the state of the art performance on 9/12 problems with short scaffolds.



