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Diffusion models have been powerful…

Text to image generation with 
Stable Diffusion

Video generation
 with Open AI’s Sora

Protein generation 
with SE3 FrameDiff*

*SE3 diffusion model with application to protein backbone generation.  Yim et al. 2023



• Creating and training large-scale diffusion models from scratch is a massive 
undertaking

• There are (many) off-the-shelf pre-trained diffusion models

• They provide good-quality universal generation

• Practitioners are often more interested in controllable generation that is customized 
to a specific task

source: (1) De novo design of protein structure and function with RFdiffusion. Watson et al. 2023.

(2) Doug Tischer



How can we make use of those powerful, pre-trained diffusion models 

for controllable generation?



There are two common paradigms to adapt pre-trained diffusion models

• Training-required approach

• Finetune on specific tasks

• Adapt model’s architecture to take in additional inputs

• Pros: 

• fast inference

• good performance if additional training is “sufficient"

• Cons: 

• labor- and compute-extensive

• less flexible. E.g. difficult to adapting to new tasks, or 
composition of tasks.  

• Inference-time approach

• Heuristic method: e.g. guidance

• More theoretically grounded methods

• Pros: 

• training-free

• more flexible

• Cons:

• increased inference time and/or compute

• some heuristic methods may have low-fidelity 
generation output



There are two common paradigms to adapt pre-trained diffusion models

• Training-required approach

• Finetune on specific tasks

• Adapt model’s architecture to take in additional inputs

• Pros: 

• fast inference

• good performance if additional training is “sufficient"

• Cons: 

• labor- and compute-extensive

• less flexible. E.g. difficult to adapting to new tasks, or 
composition of desired properties. 

• Inference-time approach

• Heuristic method: e.g. guidance

• More theoretically grounded methods

• Pros: 

• training-free

• more flexible

• practical and asymptotically accurate

• Cons:

• slow inference

• some heuristic methods may have low-fidelity 
generation output
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Problem formulation
• Goal:  generate data  in response to conditioning criteria 

• Conditional sampling: 

• given a generative model , a likelihood  and and conditional 

information 

• sample from the conditional distribution . 

x0 y

pθ(x0) py|x0(y ∣ x0)

y

pθ(x0 ∣ y) ∝ pθ(x0)py∣x0(y ∣ x0)
• Example: 

•  is distribution of natural images

•  is an image classifier

•  is the conditional distribution of images given a class label 

pθ(x0)

py|x0(y ∣ x0)

pθ(x0 ∣ y) y



Problem formulation
• Goal:  generate data  in response to conditioning criteria 

• Conditional sampling: 

• given a generative model , a likelihood , and conditional 

information 

• sample from the conditional distribution . 

x0 y

pθ(x0) py|x0(y ∣ x0)

y

pθ(x0 ∣ y) ∝ pθ(x0)py∣x0(y ∣ x0)
• Example: 

•  is distribution of physically realizable proteins

•  is a Delta distribution at a substructure (e.g. motif)

•  is the conditional distribution of proteins that contain substructure  

pθ(x0)

py|x(y ∣ x0) = δx0
M
(y)

pθ(x0 ∣ y) y
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Diffusion model learns the distribution of data  by gradually adding noise 
to the data, and learning to reverse the noising process

x0

q(xt ∣ xt−1) = 𝒩(xt ∣ xt−1, σ2)

T so large that q(xT) ≈ 𝒩(xT ∣ 0,Tσ2𝕀)



To learn  that reverses the noising process:

• Note the true reverse transition is ,   is score function

• If we have a score network  , we can parameterize 

• Can’t compute the true score, but 

• If we can learn to predict the clean data via a denoiser network 

• Then we can parameterize the score network using denoisier: 

pθ(xt−1 ∣ xt)
q(xt−1 ∣ xt) ≈ 𝒩(xt−1 ∣ xt + σ2 ∇xtlog q(xt), σ2) log q(xt)

sθ(xt; t) ≈ ∇xtlog q(xt)

pθ(xt−1 ∣ xt) := 𝒩(xt−1 ∣ xt + σ2sθ(xt; t), σ2)

∇xtlog q(xt) =
𝔼q[x0 ∣ xt]−xt

tσ2

̂x0
θ(x

t; t) ≈ 𝔼q[x0 ∣ xt]

sθ(xt; t) :=
̂x0
θ(xt; t)−xt

tσ2

min
θ

T

∑
t=1

ct𝔼q(xt|x0)∥x0 − ̂x0
θ(xt; t)∥2

Training is reduced to a series of 
self-supervision tasks



Generation
• Sample random noise 

• Iteratively refine the noisy datapoint  

• first predict the clean data 

• then transform  to the score  required for transition  

• Return the clean data 

xT

xt ∼ pθ(xt ∣ xt+1)
̂x0
θ(xt)

̂x0
θ(xt) sθ(xt)
x0



noisy data  xt denoising pred.  ̂x0
θ(xt)
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• Recall our task of conditional sampling: 

• given a generative model , a likelihood , and conditional 

information 

• sample from the conditional distribution . 

pθ(x0) py|x0(y ∣ x0)

y

pθ(x0 ∣ y) ∝ pθ(x0)py∣x0(y ∣ x0)

• In diffusion models, augment the space to include 

• given a diffusion model , a likelihood , and conditional 

information 

• sample from the conditional distribution . 

x1:T

pθ(x0:T) py|x0(y ∣ x0)

y

pθ(x0:T ∣ y) ∝ pθ(x0:T)py∣x0(y ∣ x0)



• We cannot directly sample from . 

• However, the joint distribution  is computable

• Naive importance sampling:

• Proposal: unconditional diffusion model 

• Target (unnormalized): 

• Weight :

pθ(x0:T ∣ y) ∝ pθ(x0:T)py∣x0(y ∣ x0)

pθ(x0:T)py∣x0(y ∣ x0)

pθ(x0:T)

pθ(x0:T ∣ y) ∝ pθ(x0:T)py∣x0(y ∣ x0)

=
Target

Proposal
w(x0:T) =

pθ(x0:T) py∣x0(y ∣ x0)
pθ(x0:T) = py∣x0(y ∣ x0)

Generate a bunch of particles (samples) from proposal (diffusion models), and 

then resample them according to their weights (likelihood values)

• Asymptotically exact

• Low efficiency,  e.g. 1 out of 1k sampled images is cat, for 1k possible classes



Method: Twisted Diffusion Sampler

Ideas: 

• twist the naive proposal to approach the ideal proposal

• develop intermediate weighting mechanism (Sequential Monte Carlo)

Secret sauce: 

• the denoising prediction ̂x0
θ(xt)



Ideal proposal: 

Let’s approximate with some 

• Set 

• Set , where 

• Intuition: we want to refine the sample in the direction of 

1. increasing unconditional marginal density, 

2. increasing likelihood of predicted data. 

pθ(x0:T ∣ y) = pθ(xT ∣ y)
T

∏
t=1

pθ(xt−1 ∣ xt, y)

p̃θ(x0:T ∣ y)

p̃θ(xT ∣ y) := 𝒩(xT ∣ 0,Tσ2𝕀) ≈ pθ(xT ∣ y)

p̃θ(xt−1 ∣ xt, y) := 𝒩(xt−1 ∣ xt + σ2[sθ(xt)+ ∇xt
log p̃θ(y ∣ xt)], σ2)

p̃θ(y ∣ xt) := py∣x0(y ∣ ̂x0
θ(x

t)) ≈ pθ(y ∣ xt)



• Set , where 

• Goal: show  is a reasonable approximation to the true 

p̃θ(xt−1 ∣ xt, y) := 𝒩(xt−1 ∣ xt + σ2[sθ(xt)+ ∇xt
log p̃θ(y ∣ xt)], σ2)

p̃θ(y ∣ xt) := py∣x0(y ∣ ̂x0
θ(x

t)) ≈ pθ(y ∣ xt)

p̃θ(xt−1 ∣ xt, y) pθ(xt−1 ∣ xt, y)

xtxt−1y

pθ(xt−1 ∣ xt, y) = pθ(xt−1 ∣ xt)pθ(y ∣ xt−1)/pθ(y ∣ xt) Bayes’ rule

≈ pθ(xt−1 ∣ xt)p̃θ(y ∣ xt−1)/p̃θ(y ∣ xt) Likelihood approximation

≈ pθ(xt−1 ∣ xt)exp{(xt − xt−1)∇xtlog p̃θ(y ∣ xt)} Taylor expansion

= 𝒩(xt−1 ∣ xt + σ2[sθ(xt) + ∇xtlog p̃θ(y ∣ xt), σ2) Twist and complete the square 

=: p̃θ(xt−1 ∣ xt, y)



We have obtained the twisted proposal: 

•We could directly plug it in to the importance sampling procedure.

•But this procedure will accumulate approximation errors in the sequential generation 

steps, and therefore could still be sample-inefficient. 

• Idea: design intermediate target and weight to correct for intermediate errors

•roughly: performing IS at every time step

•more formally: Sequential Monte Carlo (SMC)

p̃θ(x0:T ∣ y) = p̃θ(xT ∣ y)
T

∏
t=1

p̃θ(xt−1 ∣ xt, y)



pθ(x0:T ∣ y) ∝ pθ(xT ∣ y)
1

∏
t=T

pθ(xt−1 ∣ xt, y)

Final target ideal intermediate target up to  t − 1

•Idea: design intermediate target and weight to correct for intermediate errors

compute intermediate weights

intractable

pθ(xt−1 ∣ xt, y) ≈ pθ(xt−1 ∣ xt)p̃θ(y ∣ xt−1)/p̃θ(y ∣ xt) := twisted intermediate target 

•Set the intermediate weight to account for errors

wt−1 :=
pθ(xt−1 ∣ xt)p̃θ(y ∣ xt−1)/p̃θ(y ∣ xt)

p̃θ(xt−1 ∣ xt, y)

but we can get a good approx. for free from twisted proposal
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Task: generate the scaffold given a motif

Conditional sampling formulation: 
•
•  is the location indices for the motif segment,  for the scaffold
• The likelihood function is 

• or we can consider additional degree of freedom in the locations 
of motif , where  are all possible motif locations

xt = [xt
M, xt

S], t = 0,⋯, T
M S

δx0
M
(y)

∑
M∈M

δx0
M
(y) M



Given motif segment:
particle 1 particle 2 particle 3

particle 4 particle 5 particle 6

particle 7 particle 8 particle 9

Motif

Scaffold

Weight



Success rate improves with more particles 
(motif: 5IUS)

TDS v.s. RF diffusion: Number of problems with 
higher success rate on benchmark test cases.

TDS achieves the state of the art performance on 9/12 problems with short scaffolds.


